International Science Plan

Version 1.0 (last edit 29 July 2021): NAWDIC_Int_Science_Plan_V1.0_20210729.pdf

External Literature

  • Browning, K. A. (1997). The dry intrusion perspective of extra-tropical cyclone development. Meteorol. Appl., 4(4), 317-324. https://doi.org/10.1017/S1350482797000613
  • Carlson, T. N. (1980). Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Weather Rev., 108(10), 1498-1509. https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2
  • Catto, J.L., & Raveh-Rubin, S. (2019). Climatology and dynamics of the link between dry intrusions and cold fronts during winter. Part I: global climatology. Clim. Dynam., 53, 1873-1892. https://doi.org/10.1007/s00382-019-04745-w
  • Givon, Y., Keller, D., Pennel, R., Drobinski, P. & Raveh-Rubin, S. (2024) Decomposing the role of dry intrusions for ocean evaporation during mistral. Q. J. Roy. Meteor. Soc., 1–18. Available from: https://doi.org/10.1002/qj.4670
  • Grams, C. M., & Archambault, H. M. (2016). The Key Role of Diabatic Outflow in Amplifying the Midlatitude Flow: A Representative Case Study of Weather Systems Surrounding Western North Pacific Extratropical Transition, Mon. Weather Rev., 144(10), 3847-3869. https://doi.org/10.1175/MWR-D-15-0419.1
  • Harvey, B., Methven, J., Sanchez, C., & Schäfler, A. (2020). Diabatic generation of negative potential vorticity and its impact on the North Atlantic jet stream. Q. J. Roy. Meteor. Soc., 146(728), 1477-1497. https://doi.org/10.1002/qj.3747
  • Ilotoviz, E., Ghate, V. P., & Raveh-Rubin, S. (2021). The impact of slantwise descending dry intrusions on the marine boundary layer and air-sea interface over the ARM Eastern North Atlantic site. J. Geophys. Res.-Atmos., 126, e2020JD033879. https://doi.org/10.1029/2020JD033879
  • Kalthoff, N., Adler, B., Wieser, A., Kohler, M., Träumner, K., Handwerker, J., Corsmeier, U., Khodayar, S., Lambert, D., Kopmann, A., Kunka, N., Dick, G., Ramatschi, M., Wickert, J., & Kottmeier, C. (2013). KITcube – a mobile observation platform for convection studies deployed during HyMeX. Meteorol. Z., 22(6), 633-647. https://doi.org/10.1127/0941-2948/2013/0542
  • Magnusson, L. & Sandu, I. (2019). Experts review synergies between observational campaigns and weather forecasting, ECMWF Newsletter, No. 161, ECMWF, Reading, United Kingdom, available at: https://www.ecmwf.int/sites/default/files/elibrary/2019/19263-newsletter-no-161-autumn-2019.pdf
  • Martius, O., Schwierz, C., & Davies, H. C. (2010). Tropopause-Level Waveguides, J. Atmos. Sci., 67(3), 866-879. https://doi.org/10.1175/2009JAS2995.1
  • Oertel, A., Boettcher, M., Joos, H., Sprenger, M., & Wernli, H. (2020). Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics. Weather Clim. Dynam., 1(1), 127-153. https://doi.org/10.5194/wcd-1-127-2020
  • Quinting, J. F., & Vitart, F. (2019). Representation of synoptic-scale Rossby wave packets and blocking in the S2S prediction project database. Geophys. Res. Lett., 46, 1070-1078. https://doi.org/10.1029/2018GL081381
  • Raveh-Rubin, S. (2017). Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30(17), 6661-6682. https://doi.org/10.1175/JCLI-D-16-0782.1
  • Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, J.D., McTaggart-Cowan, R., Methven, J., Rivière, G., and 42 Co-Authors (2018). The North Atlantic waveguide and downstream impact experiment. Bull. Am. Meteorol. Soc., 99(8), 1607-1637. https://doi.org/10.1175/BAMS-D-17-0003.1
  • Schäfler, A., B. Harvey, J. Methven, J.D. Doyle, S. Rahm, O. Reitebuch, F. Weiler, and B. Witschas (2020). Observation of jet stream winds during NAWDEX and characterization of systematic meteorological analysis errors. Mon. Weather Rev., 148(7), 2889-2907. https://doi.org/10.1175/MWR-D-19-0229.1
  • Sperka, C. (2024). Structure of dry intrusions over western Europe on the basis of observational and model data. Master Thesis, Karlsruhe Institute of Technology. https://www.imk-tro.kit.edu/5734_12635.php